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based on the recorded natural behavior of vehicle operators interacting with infrastructure and 
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naturalistic driving study (https://insight.shrp2nds.us/) were used in this project to better 
understand car-following behavior from passenger vehicles on freeway segments (Virginia Tech 
Transportation Institute, 2020). A calibration process is proposed for microscopic traffic 
simulation to ensure that simulated vehicle-to-vehicle interactions reflect naturalistic behavior. 
The process complements calibration practices focused on macroscopic metrics. 

The analysis produced detailed driving behavior distributions in terms of three main metrics: 
spacing between the instrumented vehicle and a leader in the same lane, acceleration of the 
instrumented vehicle, and acceleration change rate of the instrumented vehicle. The research 
team explored the potential benefits of incorporating measures derived from naturalistic data into 
traditional safety modeling. At a macroscopic scale, results from crash frequency prediction 
models showed consistent and significant effects associated with increases in multivehicle crash 
frequencies when the variance of the density increased, the variance of the speed increased, and 
the mean spacing decreased. The research team developed an open-source tool, the Naturalistic 
Assessments of Car-Following Trajectories tool, to implement the processes described in the 
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EXECUTIVE SUMMARY 

This research leveraged Second Strategic Highway Research Program naturalistic driving study 
(NDS) datasets to improve the understanding of driving behavior, particularly of car-following 
behavior from passenger vehicles on freeway segments under good weather and daytime 
conditions, and proposed a calibration process for microscopic traffic simulation to ensure that 
simulated vehicle-to-vehicle interactions reflect naturalistic behavior (Virginia Tech 
Transportation Institute, 2020). The proposed calibration is intended to complement typical 
calibration practices focused on macroscopic metrics such as travel time, delay, and queues. 
Final datasets for analysis included more than 1,600 h of car-following data from more than 
1,700 unique drivers in three States. The analysis produced detailed driving behavior 
distributions in terms of three main metrics: spacing between the instrumented vehicle and a 
leader in the same lane, acceleration of the instrumented vehicle, and acceleration change rate 
(jerk) of the instrumented vehicle. In addition, the research team obtained different distributions 
for a wide range of traffic conditions represented by driving speeds and categorized using 
overlapping ranges between 5 mph and 85 mph. The distributions served as targets to verify if 
simulation outputs display a naturalistic car-following behavior. 

The research team developed the portable, open-source Naturalistic Assessments of 
Car-Following Trajectories (NACT) tool to implement the necessary steps to transform generic 
trajectory data from simulation, produce leader-follower pairs, and perform statistical 
comparisons with the NDS targets.1 

The research team also explored the potential benefits of incorporating measures derived from 
NDS into traditional safety modeling. At a macroscopic scale, results from crash frequency 
prediction models showed consistent and significant effects associated with increases in 
multivehicle crash frequencies when the variance of the density increased, the variance of the 
speed increased, and the mean spacing decreased. In addition, at the microscopic level, the 
research team analyzed the effects of calibrating simulation using the NDS targets in terms of 
potential improvements for safety analysis. Comparisons of simulated vehicle conflict data in 
low-traffic conditions using the Surrogate Safety Assessment Model were preliminary but 
pointed to encouraging results (Federal Highway Administration (FHWA), 2022). Overall, the 
research team observed that conflict frequencies and their locations resembled slightly more 
closely those from observed crash events when simulated sites were calibrated using the NDS 
targets. However, the research team recommended additional research to evaluate a 
comprehensive set of traffic conditions, including high-traffic conditions and high-demand 
fluctuations to better quantify to benefits of calibration. 

 
1The NACT tool was developed as a part of this FHWA project. 
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

Microscopic traffic simulation is an invaluable tool for assessing the traffic performance of 
highway and street systems (Dowling, Skabardonis, and Alexiadis, 2004). Simulation enables 
not only the replication of existing traffic scenarios, but also the analysis of conditions when data 
are difficult to collect and the evaluation of “what if” scenarios with alternative geometries or 
traffic demands. However, building and setting up simulated scenarios is a complex task that 
requires detailed knowledge of the simulation tool at hand, as well as field data to calibrate 
simulation parameters to represent local traffic behavior. Thus, calibration involves adjusting 
microscopic model parameters to minimize differences between metrics produced by the 
simulation and those observed or representative from the field (Zhu, Wang, and Tarko, 2018). 

Traditionally, calibration of microscopic traffic simulation is conducted to reproduce overall 
system performance measures, such as travel time, delay, and queues (Dowling, Skabardonis, 
and Alexiadis, 2004; Ge and Menendez, 2012; Gomes, May, and Horowitz, 2004; 
Park and Qi, 2006; Lownes and Machemehl, 2006). Such target measures represent macroscopic 
traffic characteristics that are the result of interactions between individual vehicles modeled in 
the simulation at a microscopic level. 

Some State department of transportation (DOT) guidelines suggest calibration of microscopic 
simulation to match macroscopic outcomes and provide recommendations on the type of 
parameters to be adjusted and a range of typical values; examples include calibration documents 
from DOTs in Florida, Oregon, Virginia, and Wisconsin, where the guidance is intended to cover 
targets for macroscopic metrics without mention of microscopic-level calibration 
(Florida DOT, 2021; Oregon DOT, 2011; Virginia DOT, 2020; Wisconsin DOT, 2019). In 
addition, the 2019 updated version of Traffic Analysis Toolbox Volume Ⅲ—Guidelines for 
Applying Traffic Microsimulation Modeling Software provides generalized steps for calibration 
at local and system-wide levels using macroscopic target variables and includes driver 
characteristics as a data source with potential for calibration, even though driver characteristics 
are difficult to collect (Wunderlich, Meenakshy, and Peiwei, 2019). Additionally, Traffic 
Analysis Toolbox Volume Ⅲ—Guidelines for Applying Traffic Microsimulation Modeling 
Software describes a group of variables related to driver behavior to be calibrated in the 
simulation toward meeting macroscopic targets but does not offer further guidelines to ensure 
adequate microscopic behavior at the individual vehicle level. 

Although macroscopic targets reflect certain field conditions, such calibration does not evaluate 
whether interactions between individual vehicles reflect naturalistic behavior. Lack of 
microscopic-level calibration is largely because collecting this type of data is difficult, 
impractical, and costly, but enhancing the simulation’s ability to emulate a wider range of traffic 
scenarios and to support new applications such as surrogate safety analysis could be beneficial 
(Balakrishna et al., 2007; Kaths, Keler, and Bogenberger, 2021). 

Microscopic target metrics include vehicle headways, spacing, speed, and acceleration 
distributions. Limited headway, spacing, and speed data can be collected for specific freeway 
sections at sensor stations, but tracking following behavior is only possible through probe or 
naturalistic driving studies (NDS). Naturalistic datasets provide real-world driving data and 
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present unique opportunities over several applications, including the calibration of car-following 
models (Sangster, Rakha, and Du, 2013). 

Not surprisingly, given the potential benefits of NDS and the advance of onboard technology for 
vehicle data collection, recent years have seen an expansion in the use of NDS for analyzing 
microscopic behavior (Zhu, Wang, and Tarko, 2018; Abbas et al., 2011; Higgs and Abbas, 2014; 
Higgs, 2011; Sangster, Rakha, and Du, 2013). For example, Sangster, Rakha, and Du (2013) 
used processed data from 8 drivers, including more than 2,000 car-following events from the 
100-car study by the Virginia Tech Transportation Institute (VTTI), to calibrate 4 car-following 
models (VTTI, 2020). These models include the Gipps, intelligent driver, 
Gaxis-Herman-Rothery, and Rakha-Pasumarthy-Adjerid models (Gipps, 1981; Treiber, 
Hennecke, and Helbing, 2000; Chandler, Herman, and Montroll, 1958; Rothery et al., 1964; 
Van Aerde and Rakha, 1995). Zhu, Wang, and Tarko also calibrated car-following models but 
used a genetic algorithm approach and driving data collected by the NDS in Shanghai, China 
(Zhu, Wang, and Tarko, 2018). This study used vehicle spacing as the measure of performance 
in the car-following models, which was extracted from 2,100 car-following periods by 
42 drivers. Lastly, other researchers used NDS to explore the influence of environmental 
conditions on car-following behavior, focusing on how to incorporate these aspects to better 
calibrate specific simulation models (Geng et al., 2016; Hammit, James, and Ahmed, 2018). 

The availability of the Second Strategic Highway Research Program (SHRP2) NDS has created 
new opportunities for calibrating microscopic traffic simulation (NCHRP, 2023; VTTI, 2020). 
Naturalistic data from the SHRP2 NDS allows the study of vehicle traversals on a large scale 
from a significant number of drivers traveling in real-world roadway conditions. A large body of 
literature relates to the SHRP2 NDS, with the project background, data description, dictionaries, 
and summary analyses available from the InSight data access website (VTTI, 2020). 

Additional datasets collected as part of NDS and compiled in the Roadway Information 
Database (RID) enhance data usability, providing information related to roadway characteristics, 
geolocation of roadway segments, work zones, etc. (Iowa State University, 2023). In particular, 
this research made extensive use of roadway layers for spatial data processing, as well as crash 
datasets. 

This research leverages SHRP2 NDS data to improve understanding of driving behavior, 
particularly car-following behavior from passenger vehicles on freeway segments under good 
weather and daytime conditions, which can be directly used to calibrate car-following models 
and traffic simulation (NCHRP, 2023). Longitudinal vehicle-to-vehicle interactions (i.e., 
car-following behaviors) are at the center of the study and provide the basis for calibrating 
simulation trajectories at a microscopic level. 

The research team used a two-part approach to conduct the research. Part A focused on 
identifying and estimating suitable driver behavior metrics so that the research team could assess 
the potential of such metrics to characterize freeway traffic conditions at a microscopic level. 
Part A also used an NDS dataset that was readily available to the research team, which sped up 
the initial process to determine the feasibility of a larger, more complete analysis covering 
additional conditions in part B (NCHRP, 2023). 
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Part B expanded on the analysis of driving behavior metrics conducted in part A by covering 
freeway segments and traffic conditions that may not have been well represented in the initial 
dataset. Part B activities included identifying, requesting, and postprocessing additional NDS 
traversals. The research team used these supplemental data, combined with the initial dataset 
from part A, to generate characterizations of driver behavior for a wide range of traffic 
conditions on several freeway segments. The research team used these behaviors as targets to 
assess whether trajectories from microscopic simulation exhibit a naturalistic behavior, allowing 
for a definition of a proposed microscopic calibration procedure. 

This report summarizes the research conducted through parts A and B and introduces a separate 
stand-alone document containing a guideline to use the Naturalistic Assessments of 
Car-Following Trajectories (NACT) tool.2 Researchers can use the NACT tool to extract 
car-following behavior from user-specified simulation output files, process the input file, and 
compare the summary data to the NDS targets. The NACT tool serves as a key element in the 
proposed calibration process. 

MAIN OBJECTIVE 

This research’s main objective is to characterize microscopic driving behavior and derive 
car-following metrics from NDS datasets collected on freeway segments in good weather 
conditions to develop model-independent guidelines that can enhance the calibration and 
verification of microscopic traffic simulation (VTTI, 2020). 

This research is intended to provide practitioners and researchers with new criteria to evaluate 
simulation from a microscopic point of view, complementing typical calibration efforts using 
macroscopic system performance measures. 

SECONDARY OBJECTIVE 

A secondary, but complementary, objective is to capitalize on the availability of associated RID 
data to evaluate whether enhanced microscopic traffic simulation resulting from the primary 
objective would also enhance the ability of the simulation to produce metrics that can be used to 
better evaluate safety outcomes with safety surrogates (Iowa State University, 2023). 

This report is organized into the following seven chapters: 

• Chapter 1 provides introduction and background information and lists the overall 
objectives of this project as defined in the initial proposal. 

• Chapter 2 describes data collection, including the data initially processed in part A, the 
data requested in part B, and the necessary transformations to begin the extraction of 
car-following metrics from NDS. 

 
2The NACT tool was developed as a part of this FHWA project. 
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• Chapter 3 includes the data processing steps once the NDS datasets were preprocessed 
and contains a description of the extraction of leader-follower pairs and the treatment of 
traversal data to extract metrics that describe car-following behaviors (VTTI, 2020). 

• Chapter 4 summarizes the extracted NDS targets in terms of vehicle spacing, 
acceleration, and jerk for all speed groups. 

• Chapter 5 describes the proposed process to incorporate the tool into calibration, the 
required fields for extraction of behaviors from simulated traversals, and the comparisons 
proposed to use the NDS targets and determine adequacy of the simulation in terms of 
car-following behavior. 

• Chapter 6 describes the exploration conducted in relation to the secondary outcomes 
related to safety analysis both at macroscopic and microscopic scales. 

• Chapter 7 offers conclusions and recommendations. 
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CHAPTER 2. DATA COLLECTION AND PREPARATION 

As described in chapter 1, Introduction and Background, the project included two main parts: 
part A and part B. Part A used datasets readily available to the research team, and part B 
complemented the initial datasets to strengthen the initial outcomes. 

For both part A and part B datasets, the research team obtained site geometric characteristics and 
traffic demands, including the following information: 

• Site and geometric characteristics: Site length, ramp spacing, number of lanes upstream 
and downstream of ramps, presence of auxiliary or high-occupancy vehicle lane, and 
speed limit. 

• Traffic demands: Annual average daily traffic (AADT) on mainline and ramps for years 
when NDS data were collected. 

The research team enhanced data processing by generating keyhole markup language (KML) 
files for each site, allowing for precise measurements and geographic referencing (Google® for 
Developers, n.d.). Figure 1 shows a sample image from one of the sites in North Carolina that 
includes the site boundaries. All KML files are available from the research team on request. 

 
Original map: © 2018 Google® Earth™: Modified by FHWA (see Acknowledgments section) (Google®, 2023). 

Figure 1. Map. Aerial view of a sample site in North Carolina with site boundaries denoted 
by a polygon. 
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PART A DATASETS 

The initial datasets from part A included about 17,500 traversals from 56 sites—22 sites located 
in Washington and 34 sites located in North Carolina. The research team conducted site selection 
for part A specifically within those two States and focused on freeway segments with closely 
spaced ramps and similar ramp configurations, mostly diagonal ramps. The research team 
filtered part A data to only include traversals from instrumented vehicles traversing through the 
sites, removing instances when the instrumented vehicles entered or exited the site using the 
ramps. About one-third of the data were still available for the initial exploration phase. 

Traversals allowed the study of vehicle interactions near interchanges, opening opportunities to 
capture car-following data under low-traffic conditions, as well as under higher traffic conditions 
and under the effect of disturbances due to entering and exiting traffic. Such a combination of 
scenarios would have been difficult to encounter at more isolated sites. 

Analysis from part A confirmed the adequacy of the traversals and produced consistent results in 
terms of spacing, speed, and acceleration data. However, while more than 100 h of car-following 
data were available from part A, most conditions represented high-speed scenarios, including 
only about 5 h of combined car-following data with sustained speeds lower than 50 mph. This 
finding prompted the need to expand part A datasets, particularly to strengthen the data under 
lower-speed conditions. 

PART B DATASETS 

During part B, the research team identified and selected new sites to cover the gaps the team 
identified in part A. The RID was the primary source of data to identify and select candidate sites 
(Iowa State University, 2023). Given the need to expand traversal data with higher traffic 
conditions with lower speeds, the research team prescreened freeway segments with high AADT, 
considering sites in all six geographical areas and States where NDS data were collected 
(Tampa, FL; Bloomington, IN; Durham, NC; Buffalo, NY; State College, PA; and Seattle, WA). 
From this effort, the research team identified sections with high traffic demands and standard 
freeway sections with parallel ramps from sites in the Seattle-Tacoma, WA, area and the 
Tampa, FL, area. Segment selection favored locations in the upper range of AADTs and avoided 
innovative interchange configurations and ramps requiring significant speed reduction, such as 
loop ramps. 

The research team carried out exploration for part B to determine a sample and select several 
traversals from the total available data at these locations. The research team provided VTTI a list 
of selected roadway segments by using their link identifications from the RID and received back 
a series of snapshots indicating that each of the 18 routes in both States (Washington and 
Florida) had more than 5,000 traversals and a wide distribution of driver age (Iowa State 
University, 2023). Each route from part B may include multiple interchanges, and thus the route 
can contain multiple individual sites, where one site is simply confined to a segment between 
two consecutive interchanges. Therefore, routes could be significantly longer than individual 
sites, and, in the research team’s case, the routes ranged between 3 and 10 mi. Overall, all 
18 routes represented more than 100 mi of roadways. 
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A review of the snapshots from the new routes from part B resulted in the preselection of about 
15,000 traversals that VTTI processed for final extraction. Selected traversals covered good 
weather conditions and a random selection of times of day (all selected traversals occurred 
between 7 a.m. and 8 p.m.), avoiding typical nighttime conditions. Additionally, less than 
5 percent of the traversals occurred before 8 a.m. or after 6 p.m. between October and March, 
reducing partial dark conditions in the dataset. 

On receipt of the traversal data, the research team began a series of preprocessing steps to 
prepare the data for car-following behavior extraction. These steps were similar to those 
followed in part A and are described in the following sections. 

NDS DATA PREPROCESSING 

Datasets from parts A and B were initially subjected to quality checks for consistency and 
completeness. The research team digitized some geographic information (e.g., site pavement 
marking lines, gore locations) about each site so that the instrumented vehicle could be used for 
analysis in MathWorks® MATLAB® (MathWorks, 2022). In this case, the United States 
Geological Survey (USGS) high-resolution orthoimagery gathered from the national map 
interface extracted the approximate coordinates of the pavement markings and gore and taper 
locations in ArcGIS® (USGS, 2016; Esri, 2015). 

The research team primarily used pavement marking lines, or edge lines, to identify the relative 
location of an instrumented vehicle along a site over the duration of a traversal. By matching a 
Global Positioning System (GPS) coordinate to the closest point on the pavement marking line, 
the position of the instrumented vehicle can be identified in reference to the points of interest and 
from the beginning of the site. 

The data the research team received from VTTI were in a standard file format (comma-separated 
values) and included all fields and time series data for each traversal (VTTI, 2020). Once the 
data were read in MATLAB using internal functions (e.g., textscan, xlsread), the research team 
completed two basic functions: identified columns of time-series data associated with specific 
variables, and performed basic data cleaning based on identifiable problems (MathWorks, 2022). 

After reading the data, the research team sorted the data in a MATLAB structure array 
(MathWorks, 2022). The structure array creates a single object that may contain multiple fields 
to store many different types of data associated with that object. In this case, each traversal acts 
as an object, and the different time-series variables were assigned to the object using unique field 
names. This data structure also made it possible to create a group of structure arrays, where a 
single variable object can be used to store and pass a large number of traversals and their 
associated data. 

Some basic data-handling processes were also necessary in preparation for analyzing the 
time-series data from the instrumented vehicles. The most common circumstance involved 
handling missing data in time-series data, primarily due to data points collected at different 
frequencies for different variables (i.e., asynchronous series). This circumstance was the case 
when the research team analyzed lane position data (collected every 0.1 s) to detect a lane 
change and wanted to associate it with the GPS location of the vehicle (collected approximately 
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every 1 s). Alternatively, an observation might have just been dropped, leaving a small, empty 
space in a longer stream of data. The research team used simple linear interpolation to estimate 
values for variables at time stamps between observations as long as the data gap was at most 2 s, 
with larger gaps in data resulting in the time series not being further considered in the analysis. 
This procedure was necessary for analyzing most time-series variables, including lane position, 
GPS location, speed, and radar variables. 

The research team also defined data transformations to make raw data simpler to work with. For 
example, the team developed a function to translate radar range and range rate of change into 
vehicle positions and speeds for nearby objects captured via radar. Since speed data could be 
available from multiple sources (GPS and instrumented vehicle), another function identifies the 
speed variable that contains the most information, performs some common-sense checks 
(e.g., check for unrealistic speeds), and sets the information aside for further analysis. 

Some amount of processing was necessary for analyzing the location of time-series data based on 
GPS coordinates. This processing generally involved changing the projection of the GPS 
coordinate data for use with local projections, interpolating coordinate data, and calculating the 
relative position or distance for the available coordinate data for each traversal. 

Lastly, the research team set vehicle location controls to identify anomalies in vehicle traversals 
and prevent unexpected metrics. For example, an instrumented vehicle may travel beyond the 
selected start and end points of a study site, or the trajectories may use a ramp to exit and then 
reenter the site. These situations were uncommon, but their removal was essential in maintaining 
the quality of the analysis. 

After interpolating the vehicle position, the research team used an algorithm developed for NDS 
data to give each vehicle a relative location or position at each study site. To provide this 
common reference, the research team assigned each site a roadway edge line, which allowed 
each trajectory to be reprojected along the edge line so that distances could be calculated with a 
common starting point and the distances could all be calculated along the same path (removing 
variations in distance due to small lateral position changes). 
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CHAPTER 3. NDS CAR-FOLLOWING DATASETS 

This analysis focused on car-following behavior on freeway segments, specifically when 
vehicles are traveling through mainline lanes. This focus excludes the behavior of drivers on 
entry or exit ramps, drivers using acceleration or deceleration segments as they leave or enter 
ramps, and drivers in the process of changing lanes. 

Time series for each traversal contained essential data to extract the car-following behavior, 
including vehicle trajectory (i.e., vehicle coordinates), instrumented vehicle speed, and processed 
radar data identifying objects detected by the front-facing radar, their longitudinal and lateral 
range, and approximate lane width with respect to the instrumented vehicle. 

To extract car-following behavior, the research team analyzed the radar data in combination with 
the instrumented vehicle trajectory to develop leader-follower time series. This new time series 
included vehicle spacing between the instrumented vehicle acting as a follower, and a 
downstream vehicle in the same lane acting as a leader. The conceptual process to extract 
leader-follower data is described in the Leader-Follower Time Series section. 

LEADER-FOLLOWER TIME SERIES 

By combining information from the radar and constructing traversals from the instrumented 
vehicles, the research team could analyze car-following behavior in terms of vehicle spacing 
between a vehicle acting as a follower and a vehicle ahead in the same lane acting as a leader. 
Along with spacing, changes in vehicle position every 0.1 s provide an indication of speed and a 
corresponding acceleration, completing a picture for the vehicle kinetics in the longitudinal 
direction and describing car-following behavior from a microscopic standpoint. The basic logic 
to estimate vehicle spacing for the instrumented vehicle and radar objects is illustrated in 
figure 2, where the dashed arrows represent the range measured from the instrumented vehicle 
(S) to nearby radar objects (R1, R2, and R3) and is the basis for the spacing estimation. Spacing 
can be calculated provided that vehicles are traveling in the same lane (e.g., R1 and R3, S and 
R2), as identified by an indicator where 0 is the subject lane, and −2, −1, +1, or +2 are adjacent 
lanes to the left (indicated with a “−”) and right (indicated with a “+”) of the instrumented 
vehicle. 
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Source: Federal Highway Administration (FHWA). 

Figure 2. Illustration. Conceptual representation of spacing calculation using radar data 
from subject instrumented vehicle (S). 

The research team’s initial calculations included metrics such as spacing for leader-follower 
pairs in adjacent lanes, as shown in figure 2; however, the final datasets developed NDS metrics 
only for pairs involving the instrumented vehicle (i.e., pairs when the leader was in the subject 
lane, or lane 0). Observations from adjacent lanes were beneficial to enhance the number of 
traversals in the analysis, but were inherently less reliable than those involving the instrumented 
vehicle because both the spacing between the two detected vehicles and their exact distance from 
the instrumented vehicle highly depended on what part of the vehicle was detected by the radar 
(e.g., the rear bumper, or the middle portion of the vehicle body, or even its front corner), 
increasing uncertainty. Additionally, driver information was not available, further limiting 
posterior analysis. 

With the expansion of the datasets from part A to part B, a wider set of traffic conditions were 
expected to be covered by a larger number of traversals, also reducing the need to rely on 
additional data from adjacent lanes. The process to estimate traffic conditions from the trajectory 
data was essential in understanding how to analyze the car-following behavior and is described 
in the Traffic State Estimations section of this report. 

TRAFFIC STATE ESTIMATIONS 

Given the dependency of car-following behavior on existing traffic conditions, the extraction of 
data from NDS and the development of target metrics required contextualization and 
quantification of such conditions. However, since the NDS datasets do not provide such 
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estimations, the research team conducted exploration to identify potential metrics for this 
purpose (VTTI, 2020). 

From the fundamental traffic diagram, speed, flow, and density were candidate metrics to 
describe the traffic conditions NDS drivers experienced along the traversals. From those three 
metrics, only speed was readily available, requiring additional analysis to develop estimates for 
flow and density. 

The research team borrowed a method to obtain these estimates from ideas commonly applied to 
probe vehicle data, where, in this case, the instrumented vehicle and radar objects act as probe 
vehicles (Seo, Kusakabe, and Asakura, 2015). The methodology is based on definitions of speed 
and density using an area within the time-space diagram as shown in the equations in figure 3. 

 
Figure 3. Equation. Flow, density, and speed for traffic state estimations. 

Where: 
 = estimated flow. 
 = estimated density. 
 = estimated speed. 

dn(A) = distance traveled. 
tn(A) = time spent by a known vehicle n in segment A. 
an(A) = the time-space region in A observed by combinations of known vehicles. 

The research team applied the summation terms in these equations over all known vehicles N 
observed in each segment A. Known vehicles include both instrumented vehicles and radar 
objects. 

To explore the relationships between the three fundamental metrics, the research team divided 
traversals into speed groups using the speed of the instrumented vehicle to generate the following 
general classifications of traffic: 

• Low traffic (speeds higher than 60 mph). 
• Medium traffic (speeds between 40 and 60 mph). 
• High traffic (speeds lower than 40 mph). 

The research team partitioned traversals based on their sustained speed, similar to the process 
applied to identify the period of sustained following from the leader-follower pairs. Thus, each 
partition is considered to provide a representation of the traffic conditions at the time of the 
traversal. 

The research team applied the methodology to estimate flow, density, and speed to each 
partition. The team obtained more than 50,000 partitions from this exercise, representing 780 h 
of driving including 637 h in low traffic, 115 h in medium traffic, and 28 h in high traffic. 



 

14 

Results provided consistent trends, with the speed estimations being the most reliable among the 
three, followed by density and estimates, which was expected, because the flow could amplify 
poor observations because flow is the one metric that uses two estimated values (i.e., distance 
traveled and area in the space-time diagram), whereas speed and density use direct measurements 
of time. 

Verification of the speed estimates confirms the consistency of the calculations, as shown in 
figure 4, where the speeds from the methodology are compared to the network speeds from NDS. 

 
Source: FHWA. 

Figure 4. Graph. Comparison of calculated speeds from probe methodology and NDS 
speeds. 

Similarly, the research team analyzed estimated densities to identify trends in relation to the 
speed data. The a priori expectation was to observe a decrease of speed with an increase of 
density, with the data confirming this trend, particularly when aggregated at the site level. 
Figure 5-A and figure 5-B show individual density-speed pairs and the density-speed aggregates 
by site, respectively. 
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Source: FHWA. 
vpm = vehicles per mile per lane. 

A. Example of observations from individual partitions or traversals. 

 
Source: FHWA. 

B. Example of observations at site level. 
Figure 5. Graphs. Speed-density plots from NDS data. 

Speeds lower than 8 mph are not observed, even though a large number of individual speed 
values at specific time stamps were this value and even zero, because each point represents the 
average sustained speed within the selected speed bins, potentially including averages along the 
complete traversal. In addition, aggregation of traffic condition categories based on speeds 
resulted in more stratified speed levels compared to the density estimates in figure 5-B. 
Additional subcategorization of conditions by speed will likely provide smoother transitions 
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from highest to lowest speeds, but, in turn, will affect the accuracy of the density estimations, as 
the area in the denominator of figure 3 will become increasingly smaller, becoming more 
susceptible to noise or lack of observations. This analysis helped support the idea of identifying 
general traffic density by using speed, as expected from the fundamental diagram of traffic flow, 
and supported the use of speed to represent traffic conditions when characterizing driving 
behavior. 

In addition, through this analysis, the research team generated NDS targets using a number of 
speed bins instead of producing metrics for specific low-, medium-, or high-traffic conditions. 
Speed bins provide a more flexible set of conditions and an intuitive breakdown of traffic 
conditions, compared to traffic classifications such as low, medium, or high traffic, and even 
further breakdowns such as medium-high traffic. After further analysis of alternatives (including 
traffic condition levels), the research team defined the following 10 speed bins for NDS target 
extraction: 

• 5–20 mph. 
• 15–25 mph. 
• 20–35 mph. 
• 30–40 mph. 
• 35–50 mph. 
• 45–55 mph. 
• 50–65 mph. 
• 60–70 mph. 
• 65–80 mph. 
• 75–85 mph. 

The research team analyzed traffic conditions and corresponding car-following behavior for 
observations when a leader-follower pair fit into one of the speed bins. Furthermore, the team 
only analyzed leader-follower pairs if their behavior was observed for at least 10 s consecutively. 
This condition was aimed at targeting only car-following instances where the follower had 
established a following behavior, removing instances of short leader-follower interactions. 
Setting a minimum time for leader-follower analyses is consistent with previous NDSs, where 
minimum thresholds have been used to characterize following behavior (Zhu, Wang, and Tarko, 
2018; LeBlanc et al., 2013; Chong et al., 2013; Fernandez, 2011). 

The speed bins overlap and the lowest speed bin starts from 5 mph. Overlapping bins increase 
flexibility to analyze driver behavior, as larger portions of the traversals could fit in one of the 
bins with sustained speeds within the bin boundaries. For example, without the overlapping bin 
30–40 mph, a driver traveling between 32 mph and 38 mph would not fit a single bin, and the 
driver’s behavior would have to be split, potentially leading to removing the data as a whole due 
to short following duration. 

The research team set the minimum speed of 5 mph to prevent confounding effects closely 
related to standstill conditions, as opposed to active following behavior, which also allowed the 
development of preliminary distributions of standstill distance, even though development of 
preliminary distributions of standstill distance was not a primary outcome of the study. 
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The Final NDS Dataset section describes the final dataset that the research team used for 
analysis, before describing the NDS targets obtained for simulation (NCHRP, 2023). 

FINAL NDS DATASET 

The final NDS dataset combined part A and part B sites, for a total of 104 urban and suburban 
freeway sites located in 3 out of the 6 States with NDS data (North Carolina, Washington, and 
Florida), and included a wide variety of characteristics, including speed limits, number of lanes, 
and traffic conditions (NCHRP, 2023). Summary statistics for site characteristics are shown in 
table 1. Site selection in part B focused on higher AADT values and conventional freeway 
segments without loop ramps. Most of the explored sites in Bloomington, IN; Buffalo, NY; and 
State College, PA had much lower AADTs than in Seattle, WA, and Tampa, FL, resulting in the 
last two States being selected for part B datasets. 

Table 1. Summary statistics selected sites for data analysis. 

Characteristics 
Number 
of Sites Average Maximum Minimum 

Directional AADT (vehicles 
per day) 104 56,440 101,333 15,833 

Speed limit (mph) 104 62.1 70 55 
Number of lanes 104 3.4 5 2 
Presence auxiliary lane 104 0.34 1 0 
Site length (miles) 104 1.62 4.21 0.35 

Overall, the research team extracted leader-follower pairs from 15,963 traversals encompassing 
data from 1,738 unique drivers in 3 States. Driver demographics followed a similar distribution 
to those in the NDS complete datasets in terms of driver age, as shown in table 2 
(NCHRP, 2023). This distribution does not follow the same age breakdown as the average U.S. 
driving population, so the research team also performed additional analysis to provide alternative 
characterizations of driver behavior that more closely represent national averages. 

Table 2. Driver age distribution in final NDS dataset (n = 1,738). 

Driver Age 
(yr) 

Proportion 
(percent) 

16–24 36 
25–34 16 
35–44 7 
45–54 9 
55–65 10 
65–74 11 
75+ 11 



 

18 

Table 3 shows a detailed breakdown of the data in terms of total sustained car-following time 
used to extract the NDS targets. Total car-following times reflect final driving times already 
filtered by data quality checks and meeting the minimum duration of 10 s within 1 of the 
10 predefined speed bins. Note the significant contribution of longer traversals from the part B 
datasets compared to those in part A. 

Table 3. Summary final dataset and total car-following times by project phase and State. 

Project 
Phase State 

Sites 
(no.) 

Unique 
Drivers 

Total Sustained Car-Following 
Time (hours) 

Part A NC 34 506 55.72 
Part A WA 22 575 46.32 
Part B FL 26 550 754.3 
Part B WA 22 582* 746.2 

*A total of 475 drivers in Washington from part A datasets also appeared among the 582 drivers in 
part B. The total number of unique drivers in parts A and B combined when excluding this overlap is 
1,738. 
NC = North Carolina; WA = Washington; FL = Florida. 
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CHAPTER 4. EXTRACTION OF NDS TARGETS 

After defining the final dataset for analysis, the research team extracted car-following data from 
the leader-follower files for the periods of sustained behavior and within a given speed bin. 
Metrics of interest included spacing, acceleration, and jerk, with the spacing being the primary 
target to be developed and applied for simulation calibration. Previous naturalistic studies have 
used spacing as a preferred metric to analyze car-following behavior (Zhu, Wang, and 
Tarko, 2018; Sangster, Rakha, and Du, 2013; Punzo and Montanino, 2016). 

VEHICLE SPACING 

The final dataset provided sufficient data to extract behavior at individual speed-group levels 
while ensuring similar driver distributions to those shown in table 2, reducing possible bias due 
to dissimilar participant composition by speed groups. The number of spacing observations 
within each speed group ranged from more than 360,000 for the bin with fewest data points 
(i.e., 30–40 mph) to more than 6 million points for the bins with the largest number of points 
(i.e., 50–65 mph, and 60–70 mph). High-traffic conditions, reflected by speed bins with the 
lowest speeds had significant number of points, with more than 900,000 data points for the 
5- to 20-mph bin. 

The research team developed detailed empirical distributions of vehicle spacing for each speed 
bin using the final NDS dataset (including parts A and B) (NCHRP, 2023). The distributions 
were then represented using 220 percentile points to serve as the main NDS targets. The 
distributions provide enough detail to differentiate percentiles with a precision greater than one 
quarter of a percent. Different from previous research, which often focused on expected or 
average spacing, the extracted data allow for specific comparisons of observed versus expected 
spacing at any percentile. 

Figure 6 and figure 7 show illustrations of the NDS spacing targets in terms of the probability 
density function, as well as the cumulative distribution function (CDF) for each bin, respectively. 
Key percentiles of the spacing distributions from each speed group are shown in table 4. 
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Source: FHWA. 

Figure 6. Graph. Empirical probability density plot of spacing for all speed groups. 

 
Source: FHWA. 

Figure 7. Graph. Empirical cumulative distribution plot of spacing for all speed groups. 
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Table 4. Key percentiles for vehicle spacing (foot) distributions from NDS by speed group. 

Nth 
Percentile 

Speed Bin (mph) 
5–20 15–25 20–35 30–40 35–50 45–55 50–65 60–70 65–80 75–85 

1 12.9 20.6 24.2 30.8 32.6 33.5 37.2 38.1 37.8 39.9 
5 17.9 28.2 34.3 43.0 45.9 48.3 53.2 54.9 53.6 55.7 
10 21.3 32.9 40.4 51.0 54.9 57.8 63.5 65.9 64.0 66.1 
25 28.6 42.4 53.2 66.6 73.0 78.2 86.3 90.4 88.7 88.7 
50 39.5 56.1 71.2 88.3 100.5 109.6 122.1 128.2 128.6 126.4 
75 53.8 74.3 95.0 118.6 137.4 154.9 176.6 185.5 188.1 185.5 
90 71.3 96.7 126.1 156.5 183.0 208.2 233.5 240.4 243.1 242.7 
95 84.9 113.5 148.7 183.7 217.1 242.4 262.1 266.6 267.7 267.1 
99 118.6 151.1 197.4 244.6 273.9 286.1 291.2 292.4 292.6 291.8 
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Note the consistency of the spacing values from figure 6 and figure 7, which gradually increase 
with the speed, as expected. These results could not have been obtained empirically with low 
sample sizes or without careful data processing to define car-following behavior and to filter out 
data inaccuracies. 

ACCELERATION AND DECELERATION 

In terms of vehicle kinematics, acceleration is the next natural microscopic variable after 
analyzing vehicle location (i.e., spacing) by speed groups. However, differences in acceleration 
are expected to be subtler, particularly at higher speeds. The research team produced empirical 
cumulative distributions from NDS based on the speed rate change using a time window of 0.5 s. 
Therefore, the research team observed acceleration at a lower resolution than speed (e.g., the 
network speed was recorded at a rate of 10 Hz). This decision was partially a result of typical 
human driving, where conservative estimates would still exceed 0.5 s of perception-reaction 
times and therefore the ability to adjust acceleration more than once. Higher frequency of 
acceleration changes would also incorporate larger effects from speed measurement errors. 

Figure 8 and figure 9 show the CDFs for positive acceleration and negative acceleration 
(deceleration), respectively. Similar to the spacing data, the acceleration distributions display 
organized and consistent patterns. Larger accelerations are more common at lower speeds (lower 
than 50 mph), with a 50th percentile of about 1 ft/s2 compared to about 0.3 ft/s2 for the 
50- to 65-mph group. These acceleration values are relatively small compared to maximum 
accelerations a driver can typically apply, but they are well within typical ranges specified for 
oscillation acceleration parameters. Recognize that accelerations obtained from NDS correspond 
to car-following behavior observations, excluding overtaking or lane-changing maneuvers or 
free-flowing conditions. 

 
Source: FHWA. 

Figure 8. Graph. Empirical cumulative distribution plot of acceleration for all speed 
groups. 
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Source: FHWA. 

Figure 9. Graph. Empirical cumulative distribution plot of negative acceleration 
(deceleration) for all speed groups. 

The research team also found that both positive and negative acceleration distributions from 
instrumented vehicles closely mirror each other, indicating an oscillatory behavior of a follower 
with respect to the leader, typically expected from car-following conditions. 

Overall, the acceleration data also display consistency and follow expectations, reassuring 
confidence on the NDS data and the postprocessing methods. However, as a calibration metric it 
does not provide stronger separation markers between speed bins than spacing. Acceleration 
targets are a potential secondary metric if calibration efforts are conducted beyond spacing 
distributions. In such cases, comparisons between NDS targets and simulation trajectories would 
be conducted first, as described in the proposed process, and then a secondary microscopic 
calibration using NDS acceleration targets would take place. However, benefits in conducting 
both detailed calibrations (using spacing and acceleration) instead of only using spacing may not 
warrant the increase in the process complexity. If an analyst wants to incorporate acceleration, a 
recommended alternative is using central tendency measures for the evaluation of accelerations 
(in place of complete distributions), such as the median and the interquartile range. 

ACCELERATION RATES (JERK) 

As an alternative to acceleration data, the research team also analyzed the rate of acceleration 
change (i.e., jerk) to establish potential NDS targets for simulation. The calculations for jerk 
values used two consecutive acceleration values. Since acceleration values were estimated every 
0.5 s, jerk values reflect variations in the acceleration between such values. Figure 10 and 
figure 11 show the empirical distribution of the jerk values for both acceleration and 
deceleration, respectively. As expected from the acceleration distributions, larger jerk values are 
associated with lower speeds. Sudden maneuvers at lower speeds can produce larger longitudinal 
changes in acceleration compared to vehicles already traveling at freeway speeds. Also, data are 
consistent and indicate gradual decreases of jerk values with speed; however, as a differentiating 
metric between speed group, jerk values do not have as much power as acceleration, and even 
less than spacing. Distributions of jerk values are more similar to each other as the speeds reach 
50 mph or higher, and small differences are observed between lower speed groups. 
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Source: FHWA. 

Figure 10. Graph. Empirical cumulative distribution plot of jerk for all speed groups. 

 
Source: FHWA. 

Figure 11. Graph. Empirical cumulative distribution plot of jerk (for deceleration) for all 
speed groups. 

STANDSTILL DISTANCE 

In addition to the car-following spacing, the research team also generated distributions to 
illustrate the standstill distance when speeds of the instrumented vehicle dropped to zero. 
Standstill distance does not reflect active following behavior, but may serve as a reference to 
calibrate such conditions in microscopic simulation. Figure 12 and figure 13 show the probability 
density function and the CDFs extracted from the NDS data. The 50th percentile of the 
distribution is equivalent to 9.3 ft, which is similar to what other studies have found, but may 
seem higher than some default simulation parameters (Houchin et al., 2015; Zhu, Wang, and 
Tarko, 2018). 
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Source: FHWA. 

Figure 12. Graph. Probability distribution plot of standstill distance. 

 
Source: FHWA. 

Figure 13. Graph. Cumulative distribution plot of standstill distance. 

CHARACTERIZATION AND CURVE FITTING FOR SPACING DISTRIBUTIONS 

Given the results of the NDS target extraction, where the vehicle spacing was a preferred metric 
to differentiate behavior for the defined speed levels, the research team decided to further 
investigate the potential fit of the empirical spacing distributions to known distributions 
including normal, lognormal, Weibull, and gamma. Adequate fit to a known distribution would 
bring important advantages in data analysis, in particular, in terms of statistical comparisons to 
sample values drawn from simulation. Known distributions would also carry advantages to 
characterize behavior in car-following models, as well as changes in such behavior under 
different following speeds (i.e., under different traffic conditions). 
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For this purpose, the research team analyzed the complete NDS car-following datasets for each 
speed level using the SAS® software (NCHRP, 2023; SAS Institute, 2020). The data were 
segmented and loaded in SAS using two alternative options for exploration: a compact 
segmentation where a single observation was obtained from each speed group and each traversal, 
and a detailed segmentation where a single observation was obtained from each instance of 
sustained following within one of the speed groups. So, for a given speed level, option 1 
represented each trip with a single-spacing value, whereas option 2 could include multiple 
values, each from a single sustained interaction with a leader vehicle. The research team also 
tested two different metrics summarizing the spacing behavior, so, for a given following event 
with sustained speeds, spacing could be represented either by the mean or the median of the 
observed behavior. In essence, all defined datasets represented different versions of central 
tendency measures related to vehicle spacing. 

Results from the modeling indicated a closer relationship between the spacing distributions and 
families of lognormal distributions. Also, mean values of the observed behavior provided 
improved fit over sets where the median was tested, and similar outcomes were obtained with the 
compact and the detailed segmentations when the mean was used as a metric of choice. 

Table 5 shows a summary of the fitted distributions for the compact and the detailed 
segmentation cases using the mean spacing as a metric of choice. Note the similarity in the 
distribution parameters for the two cases, even though some speed groups have a significantly 
larger number of observations, pointing to the possibility of using either segmentation for 
additional analysis. These results also indicated that intravariation of the metric for a given 
traversal had limited effects in the characterization of the driving behavior, hinting at consistent 
behavior within traversals (i.e., spacing from the same driver on the same site and under the 
same traffic conditions). 
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Table 5. Family of fitted lognormal distributions for all speed groups. 

Speed 
Group 

Compact Segmentation Parameters Detailed Segmentation Parameters 
Number of 

Observations Scale Shape Mean 
Standard 
Deviation 

Number of 
Observations Scale Shape Mean 

Standard 
Deviation 

0–20 1,328 3.68 0.472 44.13 22.04 3,516 3.66 0.497 44.00 23.29 
15–25 1,228 4.11 0.430 66.57 30.04 3,184 4.10 0.453 67.09 31.98 
20–35 1,703 4.37 0.432 87.14 39.48 4,318 4.34 0.461 85.64 41.68 
30–40 1,498 4.58 0.457 108.33 52.25 2,515 4.58 0.473 109.29 54.77 
35–50 2,741 4.78 0.538 137.61 79.65 4,177 4.78 0.548 137.83 81.59 
45–55 4,305 4.94 0.580 165.86 104.82 6,021 4.94 0.600 168.11 110.60 
50–65 19,981 5.18 0.605 214.40 142.67 28,163 5.16 0.633 213.73 150.13 
60–70 22,649 5.26 0.611 232.22 156.29 33,005 5.23 0.641 228.64 163.00 
65–80 19,121 5.29 0.605 238.34 158.56 26,565 5.25 0.639 233.91 166.11 
70–85 4,772 5.30 0.602 239.52 158.41 7,059 5.25 0.647 234.93 169.47 
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Figure 14 shows a visualization of the family of lognormal curves for the detailed segmentation 
in comparison to those from the original datasets in figure 15. The research team constructed 
these curves using similar segments as the distributions from figure 6 before the distributions 
were trimmed to a maximum of 300 ft, but they also represent more condensed data because 
each sustained following event is summarized by a mean value, instead of including each 
observation found in the NDS datasets. Nonetheless, the figures illustrate the ability of 
lognormal distributions to reproduce similar behaviors to those observed in the field (VTTI, 
2020). 

 
Source: FHWA. 

Figure 14. Graph. Lognormal spacing distributions for detailed segmentation for all speed 
groups. 

 
Source: FHWA. 

Figure 15. Graph. Empirical spacing distributions for detailed segmentation for all speed 
groups. 
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CHAPTER 5. PROPOSED CALIBRATION PROCESS 

Based on results described in chapter 4, the proposed calibration of simulation at the 
car-following data level is based on vehicle spacing distributions for specific speed groups. In 
this case, this research team defined 10 overlapping groups to provide flexibility and 
accommodate a large range of speeds from low- to high-traffic conditions. 

The research team developed a custom stand-alone tool on Python® version 3.10.6 to process 
generic vehicle trajectory data from a simulation and analyze that data in relation to the 
naturalistic behavior targets extracted from the NDS datasets (Python Software Foundation, 
2021; VTTI, 2020). This NACT tool is a compiled application in the form of an executable file 
that contains all the required dependencies to run on Microsoft® Windows®-based machines 
(Microsoft, 2023). A guideline for the NATC tool (Guideline for the Naturalistic Assessments of 
Car-Following Trajectories Tool) to document the NATC tool’s usage is also part of the 
deliverables of this research. The tool is intended to be part of a proposed calibration process, as 
shown in the schematic representation in figure 16. 
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Source: FHWA. 

Figure 16. Flowchart. Proposed use of microscopic calibration to complement standard 
calibration. 

On selection of user-defined trajectory data from microscopic simulation, the NACT tool 
identifies and analyzes leader-follower pairs to build vehicle spacing distributions for 
corresponding traffic conditions (e.g., speed bins identified for the NDS targets). Then the tool 
compares such distributions to the target benchmarks. 

Goodness-of-fit testing quantifies whether simulation trajectories produce similar spacing and 
accelerations as those in real-world conditions. If comparisons result in significant differences, 
the process loops back for further modification of the car-following parameters. Otherwise, the 
simulation can be considered calibrated from a microscopic standpoint. 

The start of the microscopic calibration process (i.e., use of the NACT tool) is tied to standard 
calibration at the macroscopic level, specifically at the point where macroscopic calibration is 
complete so that a verification of the trajectories at the microscopic level can be conducted as a 
second calibration stage. The integration of calibration at the microscopic level can be viewed as 
a bi-level analysis scenario, where the first level deals with calibration of macroscopic metrics 
and the second level deals with microscopic metrics. Analogous to findings in previous studies 
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where calibration at different levels can affect each other, conducting a final verification of the 
validity of the initial macroscopic calibration after the microscopic stages are complete is 
important (Hale et al., 2021). The last decision point before the calibration is considered 
complete in the diagram (figure 16) illustrates the importance of verifying the validity of the 
initial macroscopic calibration. 

Thus, the proposed microscopic comparisons of spacing are aimed not only at improving initial 
simulation parameter choice, but mostly as a verification of the driving behavior after typical 
macroscopic calibration steps. 

The proposed process scales down the spacing distributions from simulation for each speed 
group, such that they can be compared to the NDS targets. Then, the NACT tool performs 
statistical comparisons and generates graphical representations of the NDS and the simulation 
distributions. 

The Kolmogorov–Smirnov (K-S) test and the Cramer-Von Mises (CVM) test are applied to the 
data, where the two distributions being compared are those from the NDS target and the 
simulation data Comparisons are made for each of the speed groups and summarized in an output 
file produced by the NACT tool. 

In addition, for each speed bin, K-S and CVM statistics and their p-value are reported on a figure 
generated by the application along with the CDF plots of the spacing distribution. For enhanced 
guidance, the tool also draws a confidence band using the Dvoretzky–Kiefer–Wolfowitz (DKW) 
Inequality with a 95-percent confidence level. The bands indicate sections of the distribution 
where the K-S value is more likely to differ from the NDS targets. Examples of the generated 
plots are shown in figure 17 and figure 18, where spacing distributions from simulation are 
identified as having similar distributions and being significantly different, respectively. Note the 
confidence band from DKW around the simulation series. 

 
Source: FHWA. 

Figure 17. Graph. Sample NACT tool output—similar simulation and NDS spacing 
distributions. 

Condition: 60–70 mph 

K-S test: 
statistic = 0.050 
p-value = 0.947—not significant 

CVM test: 
statistic = 0.121 
p-value = 0.494—not significant 
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Source: FHWA. 

Figure 18. Graph. Sample NACT tool output—significantly different simulation and NDS 
spacing distributions. 

Outputs from the NACT tool provide guidance to identify speed groups and portions of the 
distributions where the largest differences exist between simulation trajectories and NDS targets. 
Simulation users are expected to take these outputs into consideration and iterate through the 
calibration process, as shown in figure 16. 

While the NACT tool analyzes input data to generate comparisons between simulation and NDS 
targets, the tool does not provide further guidance on how to adjust specific car-following 
parameters to improve goodness of fit. The tool is model agnostic and compares generic vehicle 
trajectory data without knowledge of the underlying simulation package. 

The guideline document, which was a deliverable of this project, provides details on the NACT 
tool and examples using a specific package to illustrate usage through different iterations of 
simulation runs and the effects of specific parameters on vehicle spacing. 

K-S test: 
statistic = 0.245 
p-value = 0.000—significant 

CVM test: 
statistic = 2.797 
p-value = 0.000—significant 

Condition: 35–50 mph 
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CHAPTER 6. EXPLORING THE INCORPORATION OF NDS DATA TO SAFETY 
MODELING 

This chapter presents additional exploration on the potential of incorporating NDS-derived 
variables into safety analysis at macroscopic and microscopic scales. First, the research team 
evaluated NDS macroscopic variables as part of crash prediction models in the form of density, 
speed, and spacing; and second, the research team compared safety-related outcomes from 
microscopic simulation before and after calibration of car-following models using the NDS 
targets. Although preliminary, these applications offer initial indications of some of the 
implications of using NDS targets in safety analysis. 

NDS VARIABLES IN MACROSCOPIC CRASH PREDICTION MODELS 

The analysis of the data included documenting the mean, median, variance, and 85th percentile 
of the NDS variables analyzed. These variables included: 

• Density in vehicles per mile per lane, as calculated from traffic state estimates. 
• Speed in miles per hour, as measured from speedometer or estimated network speeds. 
• Spacing for leader-follower pairs, as calculated from radar datasets. 

The research team obtained crash data for the prediction models from a combination of sources, 
including the RID and State files from the Highway Safety Information System (HSIS) (Iowa 
State University, 2023; FHWA, n.d.). In particular, the vehicle files from HSIS data were needed 
to identify the direction of travel for crash data in North Carolina. 

The research team calibrated crash prediction models using conventional generalized linear 
modeling techniques with an assumed negative binomial error distribution. The team adopted the 
Hoerl function in addition to the conventional exponential model form for relating crash 
frequency to NDS variables (Hauer, 2015). The research team used the Hoerl function in 
addition to the conventional exponential model form because the Hoerl function allows the 
model to be increasing and then decreasing (or vice versa) rather than just increasing or 
decreasing only. 

The general approach to developing the models was to first estimate a base model that did not 
include NDS variables. The base models’ purpose was to have simple models based on site 
characteristics that affect crash frequency so that the addition of other variables can be assessed 
in that context. Then, each NDS variable (density, speed, and spacing) was added to the model 
using either the mean, median, variance, or 85th percentile value. The research team used the 
improvement in the individual variable significance and the Akaike Information Criterion (AIC) 
to assess the models' overall goodness of fit (Toga, 2015). The research team used AIC because 
AIC provides measures of model performance that account for model complexity. Smaller values 
of AIC generally represent a better overall goodness of fit. Model outcomes also included a 
secondary metric, the Bayesian Information Criterion (BIC) to inform the model fit. Similar to 
AIC, lower BIC indicates a better goodness of fit. 
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Table 6 presents summary statistics for sites in Florida, North Carolina, and Washington. Table 7 
through table 9 provide the mean, median, variance, and 85th percentile for each site for density, 
speed, and leader-follower spacing for individual sites in Florida, North Carolina, and 
Washington. The tables also provide the total number of observed multiple vehicle (MV) crashes 
and the total number of observed MV daytime crashes for the 3-yr study period. 

Table 6. Summary statistics for sites in Florida, North Carolina, and Washington. 

State 
Number 
of Sites Metric 

Variable 

AADT 
(vpd) 

On Ramp 
AADT 
(vpd) 

Off 
Ramp 
AADT 
(vpd) 

1/Ramp 
Spacing 

(mi) 
Upstream 

Lanes 

MV Daytime 
Crashes and 

MV Total 
Crashes 

FL 26 
Minimum 43,454 2,875 300 0.26 2.00 0.53 
Maximum 69,667 21,625 23,667 2.64 4.00 0.92 
Average 56,046 9,233 8,662 0.86 3.00 0.76 

NC 34 
Minimum 20,167 1,767 973 0.97 2.00 0.56 
Maximum 82,500 17,333 20,667 8.05 4.00 1.00 
Average 42,566 5,645 6,174 2.45 2.64 0.82 

WA 44 
Minimum 15,833 2,667 1,700 0.40 2.00 0.50 
Maximum 101,333 27,667 29,333 7.28 5.00 1.00 
Average 67,080 9,244 9,389 1.66 3.34 0.79 

vpd = vehicles per day. 
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Table 7. Summary of Florida variables. 

State Site ID 

MV 
Total 

Crashes 
(no.) 

MV 
Daytime 
Crashes 

(no.) 

Mean 
Density 

(veh/mile) 

Median 
Density 

(veh/mile) 

Variance 
Density 

(veh/mile)2 

85th-Per 
Density 

(veh/mile) 

Average 
Speed 
(mph) 

Median 
Speed 
(mph) 

Variance 
Speed 

(mph)2 

85th-Per 
Speed 
(mph) 

Average 
Spacing 

(ft) 

Median 
Spacing 

(ft) 

Variance 
Spacing 

(ft)2 

85th-Per 
Spacing 

(ft) 
FL FL 1 81 64 37.83 33.94 528.58 51.23 66.88 68.57 62.14 72.50 201.86 181.59 9,931.62 306.79 
FL FL 2 79 63 37.65 34.25 405.49 53.11 68.13 69.65 58.98 74.34 201.94 174.39 11,631.50 311.43 
FL FL 3 28 18 36.08 33.36 258.41 51.33 70.27 70.34 20.98 74.59 229.23 199.90 16,790.09 370.63 
FL FL 4 34 24 34.50 31.64 184.65 48.05 70.15 70.66 29.62 75.06 212.33 192.05 10,776.47 322.24 
FL FL 5 13 8 35.40 31.13 562.45 51.69 69.19 69.16 32.41 75.09 251.28 213.19 22,617.57 419.88 
FL FL 6 36 24 35.10 30.74 336.13 52.59 71.64 72.06 32.23 76.36 228.10 197.61 15,939.53 352.66 
FL FL 7 82 71 37.15 33.81 363.16 54.38 71.09 71.61 28.93 76.14 206.66 181.37 12,761.15 320.37 
FL FL 8 73 53 36.98 33.68 384.46 50.82 69.28 69.92 34.98 74.18 202.43 175.31 11,303.30 311.61 
FL FL 9 7 4 35.58 30.11 444.78 55.50 69.93 70.18 28.95 75.18 245.33 220.62 20,010.84 410.31 
FL FL 10 34 18 34.66 31.32 255.92 48.06 70.28 70.39 22.96 75.00 218.85 198.57 11,588.91 336.86 
FL FL 11 51 32 30.87 27.46 331.00 42.90 71.89 72.11 19.65 76.09 248.93 237.70 12,756.48 350.51 
FL FL 12 63 43 29.56 26.27 243.18 40.97 71.31 71.41 21.63 75.68 250.16 243.10 10,157.70 351.21 
FL FL 13 71 59 37.95 33.81 460.83 55.32 68.76 70.54 72.58 75.45 201.01 177.19 11,861.98 305.68 
FL FL 14 105 89 35.04 29.93 366.10 53.68 70.64 71.05 35.96 76.40 231.08 203.34 17,096.59 375.15 
FL FL 15 141 125 37.86 34.48 317.39 54.00 67.52 69.12 64.11 74.00 188.88 165.03 10,665.97 290.24 
FL FL 16 69 45 30.37 26.41 253.52 41.62 71.33 71.50 22.02 75.77 261.36 244.95 14,548.94 390.21 
FL FL 17 58 45 33.82 28.95 507.63 48.65 70.47 71.15 29.78 75.24 231.07 215.26 12,591.41 338.85 
FL FL 18 121 99 35.84 31.45 393.70 53.06 67.53 69.34 66.15 73.73 221.80 199.29 15,267.72 355.94 
FL FL 19 54 44 38.22 30.33 647.27 60.73 68.04 70.92 148.19 76.02 225.78 192.76 20,318.61 382.48 
FL FL 20 84 64 36.06 30.28 421.11 52.06 67.62 69.95 77.95 74.90 214.84 193.18 13,477.15 349.74 
FL FL 21 73 61 40.03 35.88 473.83 60.91 62.78 62.66 38.50 68.34 209.02 173.25 16,931.43 345.07 
FL FL 22 23 19 38.39 33.22 466.01 57.95 63.66 63.24 30.41 69.08 223.35 185.58 19,681.64 379.78 
FL FL 23 32 29 37.17 33.75 367.90 56.24 61.94 61.78 31.14 67.46 211.81 173.53 16,629.11 358.87 
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State Site ID 

MV 
Total 

Crashes 
(no.) 

MV 
Daytime 
Crashes 

(no.) 

Mean 
Density 

(veh/mile) 

Median 
Density 

(veh/mile) 

Variance 
Density 

(veh/mile)2 

85th-Per 
Density 

(veh/mile) 

Average 
Speed 
(mph) 

Median 
Speed 
(mph) 

Variance 
Speed 

(mph)2 

85th-Per 
Speed 
(mph) 

Average 
Spacing 

(ft) 

Median 
Spacing 

(ft) 

Variance 
Spacing 

(ft)2 

85th-Per 
Spacing 

(ft) 
FL FL 24 20 17 36.42 29.67 705.12 52.84 64.07 64.26 35.43 69.54 223.57 200.21 16,544.63 355.61 
FL FL 25 25 23 37.25 31.01 594.37 57.27 64.71 65.08 60.44 71.11 236.18 203.92 22,128.24 400.74 
FL FL 26 58 49 40.45 33.84 659.90 63.63 63.20 64.25 69.82 69.46 204.23 175.98 16,015.89 334.46 

veh = vehicle. 

Table 8. Summary of North Carolina variables. 

State Site ID 

MV 
Total 

Crashes
(no.)  

MV 
Daytime 
Crashes 

(no.) 

Mean 
Density 

(veh/mile) 

Median 
Density 

(veh/mile) 

Variance 
Density 

(veh/mile)2 

85th-Per 
Density 

(veh/mile) 

Average 
Speed 
(mph) 

Median 
Speed 
(mph) 

Variance 
Speed 
(mph)2 

85th-Per 
Speed 
(mph) 

Average 
Spacing 

(ft) 

Median 
Spacing 

(ft) 

Variance 
Spacing 

(ft)2 

85th-Per 
Spacing 

(ft) 
NC NC 1 20 20 42.49 37.29 631.45 64.47 60.69 60.34 19.12 64.86 209.10 171.83 20,336.21 373.56 
NC NC 2 28 19 32.60 28.03 256.88 51.17 66.85 67.38 17.33 70.48 259.41 240.07 17,536.80 416.46 
NC NC 3 45 37 35.11 29.69 341.58 51.32 64.97 66.01 42.68 70.08 226.72 227.95 16,979.62 325.50 
NC NC 4 44 35 36.62 35.48 296.71 52.02 61.63 62.17 25.41 66.51 208.45 171.68 16,219.85 367.79 
NC NC 5 125 97 29.59 28.03 206.93 41.38 62.09 62.30 13.16 65.45 270.38 259.96 16,539.88 398.31 
NC NC 6 56 41 36.23 30.18 625.39 54.80 66.79 67.27 18.13 70.46 233.26 213.86 18,963.63 392.10 
NC NC 7 26 21 34.57 33.20 270.40 44.48 65.47 66.36 33.36 69.95 244.07 224.86 18,567.34 361.46 
NC NC 8 80 73 32.81 29.30 255.43 46.89 67.50 68.24 18.70 71.37 242.88 195.94 20,199.21 430.09 
NC NC 9 54 44 32.90 28.67 363.26 44.25 66.93 68.53 50.52 71.66 255.11 246.67 16,865.42 368.60 
NC NC 10 26 26 31.53 25.34 239.46 51.86 65.14 65.81 32.74 69.99 226.35 218.08 18,856.23 353.26 
NC NC 11 43 25 32.29 27.83 305.33 44.62 65.22 65.40 17.49 69.77 242.13 233.28 17,316.33 392.46 
NC NC 12 29 27 34.12 30.41 329.95 54.92 63.79 66.52 78.89 69.51 246.39 207.40 22,112.64 431.94 
NC NC 13 10 10 33.35 27.66 514.12 49.16 64.63 65.16 29.08 69.57 240.35 210.11 20,936.18 407.65 
NC NC 14 16 15 30.24 27.55 253.46 44.15 64.59 65.08 26.11 68.52 258.89 221.97 19,140.80 402.87 
NC NC 15 4 3 42.43 29.10 3,664.44 57.22 57.73 58.28 14.58 60.74 220.21 198.18 14,754.12 346.81 
NC NC 16 N/A N/A 32.12 30.01 246.93 43.78 59.17 59.04 16.09 63.32 246.03 209.73 18,457.44 380.70 
NC NC 17 25 21 33.50 32.16 235.08 45.61 62.61 63.28 39.52 67.13 253.06 223.96 15,253.64 387.97 
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State Site ID 

MV 
Total 

Crashes
(no.)  

MV 
Daytime 
Crashes 

(no.) 

Mean 
Density 

(veh/mile) 

Median 
Density 

(veh/mile) 

Variance 
Density 

(veh/mile)2 

85th-Per 
Density 

(veh/mile) 

Average 
Speed 
(mph) 

Median 
Speed 
(mph) 

Variance 
Speed 
(mph)2 

85th-Per 
Speed 
(mph) 

Average 
Spacing 

(ft) 

Median 
Spacing 

(ft) 

Variance 
Spacing 

(ft)2 

85th-Per 
Spacing 

(ft) 
NC NC 18 28 24 37.00 32.63 578.86 50.17 57.02 59.23 83.42 63.42 238.04 214.65 19,107.67 366.98 
NC NC 19 35 34 39.80 36.69 504.06 54.15 56.14 57.18 43.53 61.85 200.96 183.47 15,016.09 324.64 
NC NC 20 15 15 38.79 33.09 546.88 60.78 56.28 56.31 51.39 62.57 228.75 181.41 21,406.74 396.41 
NC NC 21 32 28 34.81 28.07 358.38 52.43 58.28 58.70 24.20 63.55 224.40 207.25 14,850.14 360.88 
NC NC 22 9 8 34.76 28.02 521.06 52.14 61.63 61.12 14.83 64.62 228.00 206.54 14,349.55 361.04 
NC NC 23 9 5 36.86 32.04 384.99 55.98 59.55 59.74 25.28 63.56 224.26 196.04 17,604.68 357.41 
NC NC 24 21 19 33.53 31.34 329.74 46.91 56.79 56.82 25.25 61.63 228.01 208.05 12,653.56 365.84 
NC NC 25 15 11 29.33 25.82 185.54 44.13 60.08 60.31 26.61 64.17 245.57 213.52 17,435.93 391.29 
NC NC 26 17 10 27.46 24.72 211.03 39.06 66.11 66.67 13.40 69.60 293.39 271.99 21,898.81 485.98 
NC NC 27 68 57 35.32 30.84 258.39 52.05 66.47 67.13 29.20 71.69 231.51 186.10 22,263.39 403.16 
NC NC 28 8 6 29.90 27.93 159.55 38.22 68.06 68.19 19.03 71.44 256.09 225.96 16,321.99 417.54 
NC NC 29 50 42 35.05 32.89 276.30 47.72 64.53 65.08 34.92 69.28 206.24 175.38 13,927.48 315.78 
NC NC 30 113 97 30.48 28.24 180.96 41.34 61.16 61.91 22.55 65.12 252.96 217.31 13,643.29 376.47 
NC NC 31 97 88 34.90 31.83 236.58 48.30 61.09 61.95 26.58 65.05 232.25 202.62 15,244.21 350.18 
NC NC 32 18 16 26.79 22.30 184.63 38.25 66.11 65.32 16.65 70.87 304.85 282.78 20,665.44 470.47 
NC NC 33 5 3 42.55 30.61 3,047.64 61.94 60.56 60.96 19.40 64.67 243.84 212.80 16,667.43 391.89 
NC NC 34 92 72 30.40 27.84 206.56 43.53 68.18 68.23 21.81 72.13 250.99 214.66 18,374.50 421.81 

N/A = not applicable. 

Table 9. Summary of Washington variables. 

State Site ID 

MV 
Total 

Crashes
(no.)  

MV 
Daytime 
Crashes 

(no.) 

Mean 
Density 

(veh/mile) 

Median 
Density 

(veh/mile) 

Variance 
Density 

(veh/mile)2 

85th-Per 
Density 

(veh/mile) 

Average 
Speed 
(mph) 

Median 
Speed 
(mph) 

Varianc
e Speed 
(mph)2 

85th-Per 
Speed 
(mph) 

Average 
Spacing 

(ft) 

Median 
Spacing 

(ft) 

Variance 
Spacing 

(ft)2 

85th-Per 
Spacing 

(ft) 
WA WA 1 26 20 36.96 32.67 404.40 55.14 61.87 61.56 11.16 65.37 214.34 189.15 16,628.30 366.67 
WA WA 2 15 13 34.28 29.99 252.83 48.65 60.89 60.75 18.01 65.14 226.09 186.17 17,940.27 376.84 
WA WA 3 19 13 36.01 33.96 433.03 49.17 59.40 59.98 48.70 63.99 228.86 178.26 20,074.69 384.54 
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State Site ID 

MV 
Total 

Crashes
(no.)  

MV 
Daytime 
Crashes 

(no.) 

Mean 
Density 

(veh/mile) 

Median 
Density 

(veh/mile) 

Variance 
Density 

(veh/mile)2 

85th-Per 
Density 

(veh/mile) 

Average 
Speed 
(mph) 

Median 
Speed 
(mph) 

Varianc
e Speed 
(mph)2 

85th-Per 
Speed 
(mph) 

Average 
Spacing 

(ft) 

Median 
Spacing 

(ft) 

Variance 
Spacing 

(ft)2 

85th-Per 
Spacing 

(ft) 
WA WA 4 88 78 46.23 41.01 825.56 61.32 48.35 51.62 123.60 58.40 133.37 122.79 5,927.99 210.99 
WA WA 5 114 84 36.58 34.75 183.86 51.90 58.70 58.87 15.59 63.00 195.05 170.56 10,875.48 300.63 
WA WA 6 45 36 32.28 28.43 208.20 48.44 62.45 62.15 13.84 65.85 237.45 229.89 15,616.58 386.07 
WA WA 7 88 71 38.25 35.54 351.56 52.72 55.88 58.25 64.69 61.50 198.87 145.85 16,906.74 341.92 
WA WA 8 8 7 29.75 25.66 220.85 44.15 56.74 56.81 16.79 60.99 250.16 235.27 16,983.96 365.63 
WA WA 9 27 20 35.60 32.16 359.24 53.94 60.08 60.88 35.39 64.09 221.58 179.22 18,779.73 364.27 
WA WA 10 23 16 35.18 34.37 222.08 51.35 60.50 60.24 25.71 65.12 217.98 168.11 19,442.84 345.67 
WA WA 11 11 8 35.11 31.65 388.67 52.55 60.37 61.04 15.68 63.94 238.12 183.03 22,167.93 431.10 
WA WA 12 63 54 36.75 34.04 387.60 56.01 58.99 59.33 34.71 63.11 226.10 200.63 17,275.88 361.47 
WA WA 13 2 2 25.79 22.21 175.03 41.07 62.25 62.60 9.91 64.98 300.90 284.63 21,952.99 479.15 
WA WA 14 71 36 34.32 29.42 276.37 48.71 61.91 62.33 41.93 66.59 215.76 198.82 10,538.85 318.28 
WA WA 15 13 11 32.00 29.47 224.32 43.21 58.88 58.98 13.28 62.07 226.60 201.19 13,629.36 339.02 
WA WA 16 6 5 30.15 26.95 134.73 40.78 60.57 60.60 10.84 63.23 258.06 210.45 18,078.48 411.52 
WA WA 17 80 74 40.90 37.91 223.45 56.24 55.33 56.80 52.04 60.74 179.06 145.13 13,270.17 259.04 
WA WA 18 5 5 31.26 28.25 282.27 48.72 58.12 57.93 10.88 61.50 266.71 231.54 24,007.10 472.34 
WA WA 19 62 52 36.33 34.12 398.84 47.21 56.98 58.42 42.63 62.08 200.82 170.32 14,958.46 309.99 
WA WA 20 3 2 27.96 21.67 335.20 48.02 58.85 58.96 10.65 62.66 292.89 276.75 22,470.42 477.17 
WA WA 21 8 4 34.15 31.53 259.45 50.33 58.93 58.65 16.03 63.43 217.39 173.51 18,635.07 336.06 
WA WA 22 3 2 27.70 25.43 211.73 37.12 58.94 59.34 12.11 62.06 271.99 232.61 19,178.15 439.21 
WA WA 23 84 61 31.18 27.07 242.18 43.20 63.65 63.48 10.38 66.89 263.46 241.76 17,827.16 422.73 
WA WA 24 140 86 34.16 29.01 872.08 45.11 64.05 64.32 16.87 67.20 245.53 229.21 15,121.58 369.59 
WA WA 25 166 88 34.38 29.92 537.90 49.45 62.86 63.42 25.03 66.50 238.62 223.48 14,836.17 365.22 
WA WA 26 88 62 33.62 29.58 311.42 48.86 61.22 61.89 23.85 65.09 250.49 215.54 20,738.36 416.05 
WA WA 27 84 78 37.01 34.33 240.78 52.58 58.81 59.90 35.62 63.53 201.54 174.86 13,053.32 324.05 
WA WA 28 40 35 39.06 35.75 337.68 58.18 59.72 60.53 32.13 64.33 204.47 170.07 15,713.17 338.99 
WA WA 29 54 46 36.66 34.28 254.43 52.52 59.34 60.46 42.96 64.16 210.72 175.33 16,800.60 352.10 
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State Site ID 

MV 
Total 

Crashes
(no.)  

MV 
Daytime 
Crashes 

(no.) 

Mean 
Density 

(veh/mile) 

Median 
Density 

(veh/mile) 

Variance 
Density 

(veh/mile)2 

85th-Per 
Density 

(veh/mile) 

Average 
Speed 
(mph) 

Median 
Speed 
(mph) 

Varianc
e Speed 
(mph)2 

85th-Per 
Speed 
(mph) 

Average 
Spacing 

(ft) 

Median 
Spacing 

(ft) 

Variance 
Spacing 

(ft)2 

85th-Per 
Spacing 

(ft) 
WA WA 30 67 50 37.94 34.45 405.23 52.56 59.42 61.41 56.77 65.62 201.94 168.56 13,029.27 319.52 
WA WA 31 74 59 34.86 32.24 171.73 47.47 60.31 61.70 37.28 65.42 210.05 184.87 11,996.15 323.73 
WA WA 32 83 59 33.84 31.24 160.03 45.03 61.77 62.43 22.55 65.72 216.84 194.56 10,716.79 326.40 
WA WA 33 137 122 33.67 30.97 229.85 47.65 62.00 62.56 25.86 66.50 223.91 201.99 15,442.70 352.86 
WA WA 34 301 249 38.02 35.31 264.77 51.98 58.36 59.53 41.87 63.08 181.66 155.43 10,730.29 281.16 
WA WA 35 157 142 36.71 33.41 267.20 51.85 59.37 61.94 78.25 65.59 199.90 169.79 14,241.03 317.73 
WA WA 36 54 47 36.45 33.05 361.19 53.32 59.51 61.74 76.99 65.43 219.04 178.73 20,603.30 390.48 
WA WA 37 177 169 37.44 33.75 326.83 53.26 58.72 61.62 97.27 65.59 203.92 170.36 17,224.14 336.05 
WA WA 38 121 107 34.29 30.80 255.78 48.59 59.54 60.43 44.49 64.28 225.17 203.58 16,253.09 367.16 
WA WA 39 29 26 37.43 33.48 339.76 54.34 57.35 59.19 58.18 62.51 221.27 182.16 19,648.45 400.20 
WA WA 40 124 105 38.64 35.29 378.14 55.15 58.84 60.00 41.39 63.97 196.54 162.74 14,072.04 319.55 
WA WA 41 82 49 36.18 31.23 430.53 53.22 61.69 62.18 32.82 66.28 225.38 193.67 18,810.20 382.66 
WA WA 42 58 40 38.70 34.79 448.04 57.69 60.74 61.36 24.67 64.71 213.25 172.90 17,711.05 356.91 
WA WA 43 98 86 37.98 33.30 551.13 54.22 59.75 61.18 54.19 64.97 202.50 166.62 17,285.14 337.55 
WA WA 44 85 75 41.26 33.87 850.12 61.71 56.82 59.95 118.52 64.30 188.07 146.24 19,789.22 330.94 
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The research team only applied the Hoerl form for the NDS variables (Hauer, 2015). The 
research team included the ratio of MV daytime to MV total crashes in the MV daytime crash 
model to account for the fact that while the model was predicting the daytime crashes, the 
AADT, on the on- and off-ramp AADTs included in the model were for the whole day. The base 
models have the model forms shown in figure 19 and figure 20. 

 
Figure 19. Equation. Base model for all multivehicle crashes. 

 
Figure 20. Equation. Base model for daytime multivehicle crashes. 

Where: 
Length (miles) = crossroad to crossroad length. 
Ramp Spacing (miles) = spacing between on-ramps and off-ramps. 
UPLanes = number of through lanes upstream of segment. 

Table 10 presents the base model for MV total and MV daytime crashes. 

Table 10. Base model. 

Variable 
MV Crashes MV Daytime Crashes 

Estimate Pr > ChiSq Estimate Pr > ChiSq 
Intercept −20.7833 <0.0001 −22.2779 <0.0001 
β1 1.7974 <0.0001 1.7877 <0.0001 
β2 0.1164 0.0018 0.0999 0.0075 
β3 −0.2372 0.0105 −0.2365 0.0086 
β4 0.2499 0.0030 0.2483 0.0024 
β5 0.1953 0.0054 0.1810 0.0105 
β6 N/A N/A 1.9315 <0.0001 
β8 (FL) −0.1233 0.3147 −0.1368 0.2538 
β8 (NC) 0.6952 <0.0001 0.6659 <0.0001 
β8 (WA) 0 N/A 0 N/A 
Dispersion 0.1699 0.1517 
AIC 847.6553 799.7545 
BIC 870.7345 825.3980 

Pr = probability; ChiSq = chi-squared. 
Note: Italics identify the indicator variable for the state. 
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The research team added the NDS variables to the Base model using the Hoerl function or 
conventional exponential form, as shown in figure 21 and figure 22 (Hauer, 2015). One of the 
terms of the Hoerl function (i.e., β6 or β7 for the MV total crash models, and β7 and β8 for the MV 
daytime crash model) was removed from the model if the term was not significant. 

 
Figure 21. Equation. Base model for all multivehicle crashes with NDS variable. 

 
Figure 22. Equation. Base model for daytime multivehicle crashes with NDS variable. 

Where NDS Variable is mean, median, variance, or 85th percentile of density (vehicle/mi), 
speed (mph), or spacing (ft). 

Table 11 through table 16 present details of alternate models for MV total and MV daytime 
crashes including the NDS variables. For each NDS variable, the research team developed 
separate models for mean, median, variance, and 85th percentile. Based on the individual 
variable significance as well as the AIC and BIC values, the recommended model for each NDS 
variable is identified in bold text. Variables statistically insignificant at the 10-percent level have 
their p-values identified with an asterisk (*). 

For the density models, the coefficients for all variables display the expected direction of effect 
(i.e., increase in volume associated with more crashes, longer ramp spacing associated with 
fewer crashes, more upstream lanes associated with fewer crashes) and are statistically 
significant at the 90-percent level or better (except for upstream lanes for the median of density 
model). However, looking at the individual models for mean, median, variance, and 
85th percentile, the variance of density models presents comparatively higher individual variable 
significance and AIC values on the lower end of the four models. AIC values can only be 
compared within the same dependent variable (i.e., MV total crashes and MV daytime crashes). 
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Table 11. Density models (MV crashes). 

Variable 
Mean Density Median Density Variance Density 85th-per Density 

Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Intercept −22.7857 <0.0001 −22.6117 <0.0001 −21.7712 <0.0001 −23.7286 <0.0001 

β1 1.6247 <0.00091 1.4671 <0.0001 1.6378 <0.0001 1.6805 <0.0001 

β2 0.1026 0.0060 0.0990 0.0068 0.1101 0.0025 0.0953 0.0106 

β3 −0.1873 0.0503 −0.1488 0.1257* −0.1771 0.0562 −0.1901 0.0403 

β4 0.2852 0.0008 0.3151 0.0002 0.2759 0.0010 0.2805 0.0007 

β5 0.1826 0.0086 0.1834 0.0074 0.1984 0.0036 0.1786 0.0095 

β6 0.9984 0.0861 1.3670 0.0119 0.4417 0.0278 1.0158 0.0279 

β7 n/a n/a n/a n/a −0.7018 0.0069 n/a n/a 

β8 (FL) −0.1546 0.2054 −0.1392 0.2429 −0.1836 0.1380 −0.1705 0.1602 

β8 (NC) 0.7350 <0.0001 0.7568 <0.0001 0.7307 <0.0001 0.7497 <0.0001 

β8 (WA) 0 N/A 0 N/A 0 N/A 0 N/A 

Dispersion 0.1635 0.1585 0.1583 0.1596 

AIC 846.7485 843.4986 844.3329 844.9653 
Note: Italics identify the indicator variable for the state. 

Table 12. Density models (MV daytime crashes). 

Variable 
Mean Density Median Density Variance Density 85th-per Density 

Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Intercept −24.0979 <0.0001 −23.9338 <0.0001 −23.2810 <0.0001 −24.9302 <0.0001 

β1 1.6361 <0.0001 1.4880 <0.0001 1.6495 <0.0001 1.6874 <0.0001 

β2 0.0905 0.0148 0.0895 0.0143 0.0965 0.0086 0.0860 0.0198 

β3 −0.1917 0.0394 −0.1550 0.1032 −0.1838 0.0429 −0.1934 0.0325 

β4 0.2793 0.0008 0.3064 0.0002 0.2722 0.0009 0.2736 0.0007 

β5 0.1730 0.0135 0.1774 0.0105 0.1870 0.0069 0.1723 0.0130 

β6 1.8141 <0.0001 1.7115 <0.0001 1.8371 <0.0001 1.7247 <0.0001 

β7 0.9091 0.1144 1.2693 0.0211 0.4154 0.0370 0.9298 0.0460 

β8 N/A N/A N/A N/A −0.6549 0.0175 N/A N/A 

β9 (FL) −0.1604 0.1781 −0.1431 0.2214 −0.1902 0.1177 −0.1720 0.1467 

β9 (NC) 0.7083 <0.0001 0.7348 <0.0001 0.7017 <0.0001 0.7256 <0.0001 

β9 (WA) 0 N/A 0 N/A 0 N/A 0 N/A 

Dispersion 0.1465 0.1429 0.1436 0.1433 

AIC 799.2959 796.5372 797.8315 797.8720 
Note: Italics identify the indicator variable for the state. 
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Among all models developed for the NDS variables, only the variance of density model used the 
Hoerl function where the variance of density was used twice in the model (an ln variable and a 
scaled variable) (Hauer, 2015). For both the MV total and MV daytime crashes, the ln variable 
has a positive sign, and the scaled variable has a negative sign, which indicates that the crashes 
will typically increase with an increase in variance of density; however, the crashes will plateau 
at a certain variance of density and then start decreasing. 

To further investigate this relationship, figure 23 presents a plot of predicted crashes versus the 
variance of density for both MV total and MV daytime crashes. These plots assumed average 
values for all other variables except for the variance of density. These plots show that for both 
MV total and MV daytime crash models in table 11 and table 12, the crashes plateau and then 
start to decrease slightly. 

 
Source: FHWA. 

Figure 23. Graph. Plots for protected crashes versus variance of density. 

For the speed models, the coefficients for all variables except speed display the expected 
direction of effect (i.e., increase in volume associated with more crashes, longer ramp spacing 
associated with fewer crashes, more upstream lanes associated with fewer crashes) and are 
statistically significant at the 90-percent confidence level or better. When looking at speed, the 
direction of effect for the mean and median speed variables is counterintuitive but both are 
statistically insignificant. The 85th percentile of speed variable displays the expected direction of 
effect but is also statistically insignificant. 

The variance of speed models in table 13 and table 14 present comparatively higher individual 
variable significance and AIC values on the lower end of the four models (alongside the variance 
of speed displaying the correct direction of effect while being statistically significant). 
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Table 13. Speed models (MV crashes). 

Variable 
Mean Speed Median Speed Variance Speed 85th-per Speed 

Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Intercept −14.1213 0.0154 −17.1823 0.0029 −19.9201 <0.0001 −21.2160 0.0010 

β1 1.7726 <0.0001 1.7944 <0.0001 1.6540 <0.0001 1.7977 <0.0001 

β2 0.0932 0.0238 0.1049 0.0101 0.0823 0.0298 0.1175 0.0034 

β3 −0.2042 0.0324 −0.2195 0.0221 −0.2092 0.0192 −0.2390 0.0130 

β4 0.2542 0.0023 0.2520 0.0027 0.2445 0.0024 0.2497 0.0031 

β5 0.1692 0.0202 0.1820 0.0124 0.1773 0.0093 0.1967 0.0070 

β6 −1.5320 0.2237* −0.8545 0.5045* 0.2595 0.0031 0.1015 0.9437* 

β7 n/a n/a n/a n/a n/a n/a n/a n/a 

β8 (FL) 0.0596 0.7587 −0.0222 0.9095 −0.2298 0.0632 −0.1365 0.5398 

β8 (NC) 0.7990 <0.0001 0.7519 <0.0001 0.7077 <0.0001 0.6888 <0.0001 

β8 (WA) 0 N/A 0 N/A 0 N/A 0 N/A 

Dispersion 0.1660 0.1684 0.1554 0.1700 

AIC 848.1914 849.2115 841.0452 849.6504 
Note: Italics identify the indicator variable for the state. 

Table 14. Speed models (MV daytime crashes). 

Variable 
Mean Speed Median Speed Variance Speed 85th-per Speed 

Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Intercept −16.5698 0.0054 −19.2213 0.0008 −21.4063 <0.0001 −23.0958 0.0003 

β1 1.7689 <0.0001 1.7862 <0.0001 1.6666 <0.0001 1.7881 <0.0001 

β2 0.0838 0.0365 0.0916 0.0213 0.0776 0.0393 0.1015 0.0099 

β3 −0.2079 0.0262 −0.2214 0.0180 −0.2122 0.0159 −0.2400 0.0105 

β4 0.2495 0.0021 0.2491 0.0023 0.2405 0.0025 0.2481 0.0024 

β5 0.1630 0.0245 0.1713 0.0183 0.1761 0.0112 0.1833 0.0118 

β6 1.8011 <0.0001 1.8829 <0.0001 1.6056 0.0002 1.9417 <0.0001 

β7 −1.3006 0.3100* −0.7211 0.5707* 0.2299 0.0106 0.1910 0.8932* 

β8 n/a n/a n/a n/a n/a n/a n/a n/a 

β9 (FL) 0.0241 0.9034 −0.0488 0.8033 −0.2222 0.0685 −0.1620 0.4674 

β9 (NC) 0.7601 <0.0001 0.7159 <0.0001 0.6928 <0.0001 0.6534 <0.0001 

β9 (WA) 0 N/A 0 N/A 0 N/A 0 N/A 

Dispersion 0.1488 0.1504 0.1427 0.1518 

AIC 800.7348 801.4343 795.2509 801.7365 
Note: Italics identify the indicator variable for the state. 
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Figure 24 presents a plot of predicted crashes versus the variance of speed for both MV total and 
MV daytime crashes. This plot assumed average values for all other variables except for the 
variance of speed. 

 
Source: FHWA. 

Figure 24. Graph. Plots for protected crashes versus variance of speed. 

For the spacing models, the coefficients for all variables display the expected direction of effect 
(i.e., increase in volume associated with more crashes, longer ramp spacing associated with 
fewer crashes, more upstream lanes associated with fewer crashes, increased spacing associated 
with fewer crashes) and are statistically significant at the 90-percent confidence level or better 
(except for the variance of spacing variable). However, looking at the individual models for 
mean, median, variance, and 85th percentile in table 15 and table 16, the mean of spacing model 
presents comparatively higher individual variable significance and AIC values on the lower end 
of the four models. 
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Table 15. Spacing models (MV crashes). 

Variable 
Mean Spacing Median Spacing Variance Spacing 85th-per Spacing 

Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Intercept −9.9089 0.0178 −14.4080 <0.0001 −17.3658 <0.0001 −12.2687 0.0035 

β1 1.5088 <0.0001 1.5992 <0.0001 1.7339 <0.0001 1.5615 <0.0001 

β2 0.1011 0.0046 0.1000 0.0065 0.1261 0.0009 0.1146 0.0014 

β3 −0.1561 0.0937 −0.1752 0.0624 −0.2240 0.0159 −0.1699 0.0735 

β4 0.2789 0.0005 0.2751 0.0008 0.2430 0.0038 0.2591 0.0016 

β5 0.1868 0.0056 0.1819 0.0081 0.2036 0.0036 0.1964 0.0040 

β6 −1.5068 0.0035 −0.8551 0.0217 −0.2880 0.2383* −1.0616 0.0223 

β7 N/A N/A N/A N/A N/A N/A N/A N/A 

β8 (FL) −0.1335 0.2559 −0.1112 0.3520 −0.1483 0.2296 −0.1453 0.2239 

β8 (NC) 0.7911 <0.0001 0.7811 <0.0001 0.6957 <0.0001 0.7455 <0.0001 

β8 (WA) 0 N/A 0 N/A 0 N/A 0 N/A 

Dispersion 0.1540 0.1596 0.1671 0.1592 

AIC 841.4435 844.5288 848.2704 844.5548 
Note: Italics identify the indicator variable for the state. 

Table 16. Spacing models (MV daytime crashes). 

Variable 
Mean Spacing Median Spacing Variance Spacing 85th-per Spacing 

Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Intercept −12.0171 0.0050 −16.3754 <0.0001 −18.6410 <0.0001 −14.3372 0.0005 

β1 1.5256 <0.0001 1.6133 <0.0001 1.7204 <0.0001 1.5729 <0.0001 

β2 0.0947 0.0080 0.0924 0.0116 0.1096 0.0037 0.1024 0.0045 

β3 −0.1626 0.0747 −0.1805 0.0504 −0.2242 0.0128 −0.1762 0.0560 

β4 0.2732 0.0006 0.2685 0.0008 0.2427 0.0028 0.2574 0.0013 

β5 0.1872 0.0066 0.1791 0.0101 0.1902 0.0072 0.1890 0.0067 

β6 1.5865 0.0002 1.6442 0.0001 1.9696 <0.0001 1.7874 <0.0001 

β7 −1.4134 0.0077 −0.7820 0.0426 −0.3114 0.1940* −0.9917 0.0308 

β8 N/A N/A N/A N/A N/A N/A N/A N/A 

β9 (FL) −0.1364 0.2388 −0.1158 0.3257 −0.1670 0.1673 −0.1550 0.1856 

β9 (NC) 0.7732 <0.0001 0.7589 <0.0001 0.6655 <0.0001 0.7194 <0.0001 

β9 (WA) 0 N/A 0 N/A 0 N/A 0 N/A 

Dispersion 0.1392 0.1441 0.1486 0.1425 

AIC 794.8728 797.7253 800.0756 797.1918 
Note: Italics identify the indicator variable for the state. 
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Figure 25 presents a plot of predicted crashes versus the mean of spacing for both MV total and 
MV daytime crashes. This plot assumed average values for all other variables except for the 
mean of spacing. 

 
Source: FHWA. 

Figure 25. Graph. Plots for protected crashes versus mean of spacing. 

The analysis in this section provides promising results on the measurable effects of NDS-related 
variables for macroscopic safety analysis. Even though the most direct application of NDS 
measures is expected at a microscopic scale, the significance of density, speed, and spacing on 
the models opens opportunities to evaluate additional alternatives and to conduct research at 
different scales. For example, incorporating metrics on crash prediction at certain times of day 
(i.e., different temporal scales) or for specific sections that often exhibit large or sudden changes 
in traffic conditions (i.e., different spatial scales) could be reflected in variables similar to those 
from NDS evaluated in this report. 

NDS-CALIBRATED CAR-FOLLOWING PARAMETERS AND VEHICLE CONFLICT 
ESTIMATIONS 

This second exploration presents results from an initial evaluation of the effects of calibrating 
car-following parameters in the estimation of vehicle conflicts as identified by the Surrogate 
Safety Assessment Model (SSAM) (FHWA, 2022). This analysis determines if trends in conflict 
data produced by SSAM are likely to have a closer association to crash events than those 
obtained with default simulation parameters. Important caveats must be noted in this exercise, 
because the correlation of crash data and such surrogate measures is not well-established, and 
precise metrics or expected outcomes may not represent the full potential of improved calibration 
in microscopic safety modeling. 

This exercise introduces a pipeline the research team built using open-source code in Python, 
making use of automated scripts to load a simulation file, extract trajectory data, run the 
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trajectory data through SSAM, and analyze the data for a given site or for sections within a site 
(FHWA, 2022; Python Software Foundation, 2021). Figure 26 shows a schematic representation 
of the pipeline. 

 
Source: FHWA. 

Figure 26. Illustration. Schematic representation of pipeline for processing trajectories and 
conflicts from SSAM. 

In the simulation execution step, the research team instructs the automated script to access and 
set up desired parameters in VISSIM® using the COM interface (VISSIM, n.d.). The COM API 
allows setting parameter values in the simulation and running a scenario to output the desired 
vehicle trajectory data before data ingestion in SSAM (FHWA, 2022). Then, the command line 
interface (CLI) of SSAM is accessed to automatically input the trajectories and output the 
conflicts given user-defined time-to-collision and post-encroachment time. 

As part of the input data, the research team uses SUMO NetConvert CLI to extract VISSIM’s 
links and connectors and construct a virtual road geometry for later analysis (SUMO, n.d.; 
VISSIM, n.d.). A series of site segmentation procedures is also carried out, using a separate input 
file containing the X-Y coordinates of key points within a site, including the beginning of the site, 
on-ramp location, off ramp location, and end of the site. The research team segmented sites in 
the following sections: upstream from entrance gore, weaving section, and downstream from exit 
gore. Additional or different sections can be defined in the X-Y coordinate input file to 
accommodate different site configurations and analysis areas. 

Then, the research team applies a geographical matching process to assign conflicts from SSAM 
and crash events to site sections (FHWA, 2022). The user can use the pipeline outputs to 
estimate metrics such as conflicts per crashes, and correlation analysis for predefined sections. 
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Initial simulation runs used input values equivalent to 8 percent of the AADT, producing very 
low frequency of conflicts. While these outcomes were not beneficial for an evaluation of 
associations between conflicts and crashes, the outcomes confirmed that the simulation sites 
were built correctly, and vehicles traversed sites exhibiting reasonable behavior. Based on these 
initial outcomes, the research team decided to increase hourly volumes to 12 percent of the 
AADT, aiming at obtaining a larger sample of conflicts to analyze. 

The research team first ran 12 simulation scenarios with default parameters, and then with 
parameters calibrated using NDS. The research team processed 10 runs for calibrated and 
noncalibrated parameters, extracting usable data for 2 h of simulation time from each set. For 
this exploration, all simulation scenarios had the same parameters, because they represented the 
same type of freeway segments and have similar configurations. However, indepth calibration of 
simulated scenarios should be conducted with as much field data as possible to represent 
observed conditions accurately. 

Figure 27 shows the average hourly conflict frequencies and the cumulative 3-yr crash 
frequencies for the 12 sites investigated. Overall, results showed consistent positive trends 
between conflicts and crashes, with a slightly stronger association between assuming a linear 
relation, as indicated by the regression R2 in the figures. In addition, the research team observed 
a stronger association for data extracted between the gores (figure 27-B) compared to those 
including sitewide data (figure 27-A). This information points to more consistent safety 
performance along this section within the sites, even though that section also has the highest 
crash frequencies. 

 
Source: FHWA. 

A. Example of sitewide conflicts and crashes. 

R^2 calibrated = 0.46 
R^2 default = 0.43 
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Source: FHWA. 

B. Example of conflicts and crashes between gores. 
Figure 27. Graphs. Simulation conflicts versus crash frequencies for sample sites. 

In terms of the effects of calibration, the research team observed a small effect in the tested sites 
when the car-following parameters were adjusted more closely to NDS data. The research team 
also observed only a slight improvement in the associations between crashes and conflicts. These 
results are not surprising, given that the simulations in this exercise represent basic freeway 
segments under expected normal operations, without special events that could generate 
disturbances in traffic. 

The research team recommends more detailed evaluations to further assess conflict and crash 
associations before and after calibration. Such scenarios would require more specific volume 
data to represent typical traffic fluctuations and the corresponding safety performance observed 
within the modeled periods. Researchers can take advantage of recent freeway data collection 
systems to gather the necessary data for such evaluation. 

R^2 calibrated = 0.75 
R^2 default = 0.72 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

This research leveraged SHRP2 NDS datasets to extract vehicle-level car-following measures 
from freeway segments using large samples, with more than 1,600 h of car-following data from 
more than 1,700 unique drivers and developed distributions to serve as targets to support the 
calibration of microscopic traffic simulation (VTTI, 2020). 

The proposed calibration process complements current calibration practices, where the 
simulation car-following parameters are modified to produce similar values of macroscopic 
measures of performance such as travel time, delay, and queues compared to those observed in 
the field. The additional calibration steps are intended to produce vehicle-to-vehicle interactions 
from the simulation that reflect a naturalistic behavior. Verification of vehicle-to-vehicle 
interactions is a particularly important task, as simulation parameters may often provide 
reasonable default car-following settings, but such behavior could be modified during the 
macroscopic-based calibration, generating substantially different (and unintended) behavior. 

NDS datasets were subject to custom post-processing analysis to identify leader-follower pairs 
and construct time series of the instrumented vehicle kinematics while in car-following 
conditions (VTTI, 2020). The research team characterized driving behavior in terms of three 
main metrics: spacing between the instrumented vehicle and a leader in the same lane, 
acceleration of the instrumented vehicle, and acceleration change rate (jerk) of the instrumented 
vehicle. The research team contextualized the driving behavior in terms of the instrumented 
vehicle speed, capturing changes in traffic conditions. The research team established the 
adequacy of using car-following speed as a proxy to determine traffic conditions by investigating 
and confirming that the field data produced a consistent relation between speed and density in 
scenarios with low-, medium-, and high-traffic demands. 

The NDS targets developed in this research provide a new level of detail on naturalistic driving 
behavior for speeds ranging from 5 mph to 85 mph, and therefore cover a wide range of traffic 
conditions. The research team also conducted an analysis to identify a distribution of expected 
standstill distances, providing additional findings that could also be helpful for simulation 
calibration. The high degree of consistency of the empirical distributions is notable for all three 
metrics and speed levels, which supports the validity of the process to identify the necessary sites 
and freeway segments, specific traversals, and NDS metric extraction algorithms developed by 
the team to produce large and balanced samples to characterize driving behavior. 

The research team identified vehicle spacing as the preferred metric for microscopic calibration 
because it provided the largest separation between speed groups, and therefore the most 
unambiguous targets for different traffic conditions. The NDS targets also expand the extent of 
potential comparisons with simulation outputs, because complete distributions for specific traffic 
conditions can be evaluated in addition to simpler central tendency metrics such as mean or 
median values. 

Given the need to transform trajectory data to generate leader-follower pairs, to develop time 
series of vehicle spacing, and to perform comparisons with NDS targets, the research team 
developed a portable open-source tool to complete such tasks. The NACT tool reads generic 
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trajectories from microscopic simulation and produces outputs to direct a successful microscopic 
calibration process. The NACT tool exports files with figures contrasting the NDS and the 
simulation spacing percentiles along with a 95-percent confidence level band, as well as results 
of statistical tests comparing the distributions. This research also produced a guideline on the use 
of the NACT tool, which is a separate stand-alone document. 

While the NACT tool analyzes input data to generate comparisons between simulation and NDS 
targets, the tool does not provide further guidance on how to adjust specific car-following 
parameters to improve goodness of fit. The tool is model agnostic and compares generic vehicle 
trajectory data without knowledge of the underlying simulation package. 

As a secondary objective, the research team evaluated the potential benefits of incorporating 
macroscopic measures derived from NDS datasets, such as speed, spacing, and density in safety 
modeling (VTTI, 2020). For each of these metrics, their mean, median, variance, and 85th 
percentile were evaluated as contributing factors of well-constructed crash frequency models, 
indicating potential benefits worth further exploration. In particular, the research team identified 
increase in the density variance, increase in the speed variance, and decrease in the mean spacing 
as having consistent and significant effects associated to increases in multivehicle crash 
frequencies. Final recommended models quantify the effects of these variables in relation to 
other contributing factors. These findings suggest that the implications of NDS-derived metrics 
on safety analysis support further efforts to conduct more focused research on this topic. 
Questions related to the effects of vehicle spacing on safety-related events are of particular 
interest. 

An additional exploration of the safety implications of NDS datasets on safety was also 
conducted at the microscopic level (VTTI, 2020). This work used a custom pipeline to automate 
the evaluation of potential improvements to generate more naturalistic vehicle conflict data when 
simulation scenarios are calibrated using NDS targets compared to default simulation 
parameters. The research team used the SSAM tool as a conflict identification tool part of the 
pipeline, where both frequency and location of conflicts are compared to those from crash 
history (FHWA, 2022). 

An initial exploration of 12 sites revealed that under normal conditions without disturbances, the 
number of conflicts followed similar trends before and after calibration. Slightly lower conflict 
frequencies were observed for the calibrated scenarios, and in both cases, conflicts showed a 
positive relationship with crash frequencies, which indicates that calibration did not degrade the 
operation of simulation sites as vehicles moved under constant demand, and a small but positive 
effect of calibration reduced conflicts in such normal conditions. 

Further indepth analysis to precisely determine the effects of conflicts, as well as their 
associations with crashes before and after calibration, requires detailed demand fluctuations and 
observed safety performance within the simulated periods. The research team recommends a 
careful experimental design to systematically evaluate the effects of calibration in the frequency 
of conflicts and their associations with crash data under different saturation levels and traffic 
varying conditions. Such evaluation is likely to require a large number of sites but could provide 
invaluable information on the full extent of the effects of calibration in safety assessments using 
surrogate measures from SSAM (FHWA, 2022). 
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The NDS targets developed in this research were extracted from the driving behavior of 
passenger cars on freeway segments under good weather and daytime conditions. The research 
team recommends additional research to adjust driving behavior (if needed) for additional 
vehicle types and environmental factors that may affect the spacing distributions at each speed 
level. Additionally, different segment types, such as on ramps or off ramps, are also 
recommended to be analyzed to verify potential adjustments to the observed car-following 
behavior in mainlines. 
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